
UPCBLAS REFERENCE MANUAL

VERSION 1.0

UPCBLAS API

Contents

1 Introduction 2

2 Installation Instructions 3

3 Enumerated Values 4

4 BLAS1 Routines 5
4.1 upc blas Tcopy . 5
4.2 upc blas Tswap . 6
4.3 upc blas Tscal . 7
4.4 upc blas Taxpy . 8
4.5 upc blas Tsdot . 9
4.6 upc blas Tnrm2 . 10
4.7 upc blas Tasum . 11

5 BLAS2 Routines 12
5.1 upc blas Tgemv . 12
5.2 upc blas Tger . 15
5.3 upc blas Ttrsv . 17
5.4 upc blas Tgemm . 21
5.5 upc blas Ttrsm . 24

October / 2012 1

UPCBLAS API

1 Introduction

UPCBLAS contains a subset of representative BLAS routines. Table 1 lists all the imple-
mented routines. Unlike message-passing based codes which require the input data to be
distributed in the local memory of each process, UPC functions simplify this data distribu-
tion by using shared arrays. In UPC shared arrays implicity distribute their elements among
the parts of the shared memory with affinity to the different threads.

BLAS level Tblasname Action

BLAS1

Tcopy Copies a vector
Tswap Swaps the elements of two vectors
Tscal Scales a vector by a scalar
Taxpy Updates a vector using another one:

y = α ∗ x+ y
Tdot Dot product between two vectors

Tnrm2 Euclidean norm of a vector
Tasum Sums the absolute value of the elements of a vector

BLAS2
Tgemv Matrix-vector product
Tger Outer product between two vectors
Ttrsv Solves a triangular system of equations

BLAS3
Tgemm Matrix-matrix product
Ttrsm Solves a block of triangular systems of equations

Table 1: UPCBLAS routines. All the functions follow the naming convention:
upc blas Tblasname, where “T” represents the data type (s=float; d=double; c=single
precision complex; z=double precision complex) and blasname is the name of the routine in
the sequential BLAS library

October / 2012 2

UPCBLAS API

2 Installation Instructions

1. A sequential numerical library with support for BLAS routines (e.g. MKL, GSL,
LibSci...) must be available in the system previously to the installation.

2. Create the appropriate file Smake.inc within the main folder selecting the options for
the compiler and the underlying BLAS library. There is one configuration example
in SmakeExample.inc. You only have to change the variables for the appropriate
information in your system. The variables to specify are:

• UPCBLLIBDIR: Directory for objects.

• UPCBLBINDIR: Directory for test executables. Not necessary if you do not
compile the tests.

• UPC COMPILER: Name of UPC compiler. Now UPCBLAS can work with
BERKELEY, HP and CRAY

• UPCC: Path to the UPC compiler.

• UPC OPTS: Optional flags to use with the UPC compiler.

• UPC NET: Network configuration of for the UPC compiler. This information is
available by calling the UPC compile with –version

• UPC NET OPTS: Additional options to the network selected for the compiler
(for instance -pthreads).

• THREADS: Number of static threads.

• THREAD INDIC: Way to indicate the number of static threads (-T for Berkeley
UPC, -X for Cray UPC...).

• SEQBLAS: Name of the sequential underlying numerical library. The options are:
GSL, GOTOBLAS, MKL and LIBSCI.

• SEQBLAS INCL: Path to the headers of the sequential library.

• SEQBLAS LIBS PATH: Path to the objects of the sequential library.

• SEQBLAS LIBS: Objects of the sequential library that need to be linked.

• CC: C compiler for some auxiliar non-upc functions.

• CC FLAGS: Optional flags to use with the C compiler.

3. Type ”make install“ from the main folder.

4. If you want to compile some tests, just type ”make tests“ from the main folder.

If you need support for a different configuration or you find any problem, please contact
to jgonzalezd@udc.es.

October / 2012 3

UPCBLAS API

3 Enumerated Values

The UPCBLAS routines use enumerated values to specify some characteristics of the input
matrices. Their declaration is available in the file include/types.h.

• UPC PBLAS DIMMDIST: It indicates if the matrix is distributed by rows or columns.

– upc pblas rowDist

– upc pblas colDist

• UPC PBLAS TRANSPOSE: It indicates if the matrix is transposed.

– upc pblas noTrans

– upc pblas trans

– upc pblas conjTrans

• UPC PBLAS UPLO: It indicates if the matrix is upper or lower triangular.

– upc pblas upper

– upc pblas lower

• UPC PBLAS DIAG: It indicates if all the elements in the main diagonal of the triangular
matrix are equal to 1 or not.

– upc pblas nonUnit

– upc pblas unit

• UPC PBLAS SIDE: In the BLAS3 triangular solver it indicates if the triangular matrix
is on the left or on the right side of the equation.

– upc pblas left

– upc pblas right

October / 2012 4

UPCBLAS API

4 BLAS1 Routines

These routines perform vector-vector operations. Their headers are available in the file
include/pblas1.h.

4.1 upc blas Tcopy

Function to copy vector x to vector y.

SYNTAX:

• int upc blas scopy(int block size, int size, shared void *x,

shared void *y)

• int upc blas dcopy(int block size, int size, shared void *x,

shared void *y)

• int upc blas ccopy(int block size, int size, shared void *x,

shared void *y)

• int upc blas zcopy(int block size, int size, shared void *x,

shared void *y)

PARAMETERS:

• IN block size: Storage block size for vectors x and y.

• IN size: Vectors length.

• IN x: Pointer to the position of the shared array where the source vector x is stored.

• OUT y: Pointer to the position of the shared array where the destination vector y is
stored.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

RESTRICTIONS:

• This function treats pointers x and y as if they had type shared [block size]

type[size].

• The address of the first element of x and y must have phase 0.

• The first element of x and y must be in parts of the shared memory with affinity to
the same thread.

• If x or y overlap, the behavior is undefined.

October / 2012 5

UPCBLAS API

4.2 upc blas Tswap

Function to swap the elements of two vectors.

SYNTAX:

• int upc blas sswap(int block size, int size, shared void *x,

shared void *y)

• int upc blas dswap(int block size, int size, shared void *x,

shared void *y)

• int upc blas cswap(int block size, int size, shared void *x,

shared void *y)

• int upc blas zswap(int block size, int size, shared void *x,

shared void *y)

PARAMETERS:

• IN block size: Storage block size for the vectors to swap (x and y).

• IN size: Vectors length.

• IN/OUT x,y: Pointers to the positions of the shared arrays where vectors x and y are
stored.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

RESTRICTIONS:

• This function treats pointers x and y as if they had type shared [block size]

type[size].

• The address of the first element of x and y must have phase 0.

• The first element of x and y must be in parts of the shared memory with affinity to
the same thread.

• If x or y overlap, the behavior is undefined.

October / 2012 6

UPCBLAS API

4.3 upc blas Tscal

Function to scale a vector by a scalar.

SYNTAX:

• int upc blas sscal(int block size, int size, float alpha,

shared void *x)

• int upc blas dscal(int block size, int size, double alpha,

shared void *x)

• int upc blas cscal(int block size, int size, void *alpha,

shared void *x)

• int upc blas zscal(int block size, int size, void *alpha,

shared void *x)

• int upc blas csscal(int block size, int size, float alpha,

shared void *x)

• int upc blas zdscal(int block size, int size, double alpha,

shared void *x)

PARAMETERS:

• IN block size: Storage block size for the vector.

• IN size: Vector length.

• IN alpha: Scale factor.

• IN/OUT x: Pointer to the position of the shared array where vector x is stored.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

RESTRICTIONS:

• This function treats pointer x as if it had type shared [block size] type[size].

• The address of the first element of x must have phase 0.

October / 2012 7

UPCBLAS API

4.4 upc blas Taxpy

Function to update a vector by adding to it another vector scaled by a factor. These vectors
are stored in shared arrays. The equivalent function is: y = α ∗ x+ y.

SYNTAX:

• int upc blas saxpy(int block size, int size, float alpha, shared

void *x, shared void *y)

• int upc blas daxpy(int block size, int size, double alpha, shared

void *x, shared void *y)

• int upc blas caxpy(int block size, int size, void * alpha, shared

void *x, shared void *y)

• int upc blas zaxpy(int block size, int size, void * alpha, shared

void *x, shared void *y)

PARAMETERS:

• IN block size: Storage block size for the vectors.

• IN size: Vectors length.

• IN alpha: Scale factor.

• IN x: Pointer to the position of the shared array where the source vector x is stored.

• IN/OUT y: Pointer to the position of the shared array where vector y is stored.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

– +1 if an internal memory error occurs.

RESTRICTIONS:

• This function treats pointers x and y as if they had type shared [block size]

type[size].

• The address of the first element of x and y must have phase 0.

• The first element of x and y must be in parts of the shared memory with affinity to
the same thread.

• If x or y overlap, the behavior is undefined.

October / 2012 8

UPCBLAS API

4.5 upc blas Tsdot

Function to perform the dot product between two vectors stored in shared arrays.

SYNTAX:

• int upc blas sdot(int block size, int size, shared void *x,

shared void *y, shared float *dst)

• int upc blas ddot(int block size, int size, shared void *x,

shared void *y, shared double *dst)

• int upc blas cdotc(int block size, int size, shared void *x,

shared void *y, shared void * dst)

• int upc blas zdotc(int block size, int size, shared void *x,

shared void *y, shared void * dst)

• int upc blas cdotu(int block size, int size, shared void *x,

shared void *y, shared void * dst)

• int upc blas zdotu(int block size, int size, shared void *x,

shared void *y, shared void * dst)

PARAMETERS:

• IN block size: Storage block size for the vectors.

• IN size: Vectors length.

• IN x,y: Pointers to the positions of the shared arrays where the source vectors x and
y are stored.

• OUT dst: Pointer to shared memory where the dot product result will be written. This
pointer must have memory allocated for one element.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

– +1 if an internal memory error occurs.

RESTRICTIONS:

• This function treats pointers x and y as if they had type: shared [block size]

type[size].

• The address of the first element of x and y must have phase 0.

October / 2012 9

UPCBLAS API

• The first element of x and y must be in parts of the shared memory with affinity to
the same thread.

• If x or y overlap, the behavior is undefined.

4.6 upc blas Tnrm2

Function to perform the euclidean norm of a vector stored in a shared array.

SYNTAX:

• int upc blas snrm2(int block size, int size, shared void *x,

shared float *dst)

• int upc blas dnrm2(int block size, int size, shared void *x,

shared double *dst)

• int upc blas scnrm2(int block size, int size, shared void * x,

shared float *dst)

• int upc blas dznrm2(int block size, int size, shared void * x,

shared double *dst)

PARAMETERS:

• IN block size: Storage block size for vector x.

• IN size: Vector length.

• IN x: Pointer to the position of the shared array where the source vector x is stored.

• OUT dst: Pointer to the position of shared memory where the norm result is stored.
This pointer must have memory allocated for one element.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

RESTRICTIONS:

• This function treats pointer x as if it had type shared [block size]

type[size].

• The address of the first element of x must have phase 0.

October / 2012 10

UPCBLAS API

4.7 upc blas Tasum

Function to perform the sum of the absolute values of all the elements of a vector.

SYNTAX:

• int upc blas sasum(int block size, int size, shared void * x,

shared float * dst)

• int upc blas dasum(int block size, int size, shared void * x,

shared double * dst)

• int upc blas scasum(int block size, int size, shared void * x,

shared float * dst)

• int upc blas dzasum(int block size, int size, shared void * x,

shared double * dst)

PARAMETERS:

• IN block size: Storage block size for vector x.

• IN size: Vector length.

• IN x: Pointer to the position of the shared array where the source vector x is stored.

• OUT dst: Pointer to the position of shared memory where the sum result is stored.
This pointer must have memory allocated for one element.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

RESTRICTIONS:

• This function treats pointer x as if it had type shared [block size]

type[size].

• The address of the first element of x must have phase 0.

October / 2012 11

UPCBLAS API

5 BLAS2 Routines

These routines perform matrix-vector operations. Their headers are available in the file
include/pblas2.h.

5.1 upc blas Tgemv

Function to perform the matrix-vector product: y = α∗A∗x+β ∗y (with transpose variants
of matrix A).

SYNTAX:

• int upc blas sgemv(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transpose, int m, int n,

float alpha, shared void *A, int lda, shared void *x, float

beta, shared void *y)

• int upc blas dgemv(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transpose, int m, int n,

double alpha, shared void *A, int lda, shared void *x, double

beta, shared void *y)

• int upc blas cgemv(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transpose, int m, int n,

void *alpha, shared void *A, int lda, shared void *x, void

beta, shared void *y)

• int upc blas zgemv(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transpose, int m, int n,

void *alpha, shared void *A, int lda, shared void *x, void

beta, shared void *y)

PARAMETERS:

• IN dimmDist: Enumerated value representing the matrix dimension that will be dis-
tributed among threads. Each thread must have one or more complete rows or columns
depending on this parameter. If upc pblas rowDist is selected, each thread has com-
plete rows. Columns are distributed entirely in the upc pblas colDist case.

• IN block size: Number of rows or columns (depending on dimmDist) of the matrix
that are consecutively distributed among all threads. For example, in the upc pblas rowDist

case, the first block size rows will correspond to thread 0, the second block size

ones to thread 1, etc. Remember that blocks are built using whole rows/columns and
not individual elements.

October / 2012 12

UPCBLAS API

• IN sec block size: Depending on the selected dimmDist, the block size of one of
the source vectors is automatically determined (see RESTRICTIONS below) but the
distribution of the other vector can vary. This parameter is used to indicate the block
size of the vector which is not automatically defined.

• IN transpose: Enumerated value to indicate if the matrix is transposed.

• IN m: Number of rows of matrix A.

• IN n: Number of columns of matrix A.

• IN alpha: Scale factor for matrix A.

• IN A: Pointer to the position of the shared array where the source matrix A is stored.

• IN lda: It specifies the first dimension of A as declared in the calling program (used
to work with submatrices). It must be at least n.

• IN x: Pointer to the position of the shared array where the source vector x is stored.

• IN beta: Scale factor for vector y.

• IN/OUT y: Pointer to the position of the shared array where vector y is stored.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

– +1 if an internal memory error occurs.

RESTRICTIONS:

The block size specifications are different depending on the dimmDist selection:

1. upc pblas rowDist: All the elements in a row must have affinity to the same thread
but the number of consecutive rows in each thread can change. In this case, this
function treats array pointers as if they had type:

• A:shared [block size*lda] type [m*lda]

• x:shared [sec block size] type [n]

• y:shared [block size] type [m]

In transpose case:

• A:shared [block size] type [m*lda]

• x:shared [sec block size] type [m]

• y:shared [block size] type [n]

October / 2012 13

UPCBLAS API

Besides, there are some limitations about the block size and sec block size param-
eters:

• The address of the first element of y must have phase 0.

• The address of the first element of x must have phase 0.

• The first element of A and y must be in parts of the shared memory with affinity
to the same thread.

• If A non-transpose:

– The first element of A must be in the first row of a block in the shared memory
space.

• If A transpose:

– The address of the first element of A must have phase 0.

– The first element of all rows must have affinity to thread 0 with phase
0. To achieve this, the following condition must hold: lda%(block size ∗
THREADS) == 0.

2. upc pblas colDist: All the elements in a column must have affinity to the same
thread but the number of consecutive columns in each thread can change. In this case,
this function treats array pointers as if they had type:

• A:shared [block size] type [m*lda]

• x:shared [block size] type [n]

• y:shared [sec block size] type [m]

In transpose case:

• A:shared [block size*lda] type [m*lda]

• x:shared [block size] type [m]

• y:shared [sec block size] type [n]

Besides, there are some limitations about the block size and
sec block size parameters:

• The address of the first element of y must have phase 0.

• The address of the first element of x must have phase 0.

• The first element of A and x must be in parts of the shared memory with affinity
to the same thread.

• If A non-transpose:

– The address of the first element of A must have phase 0.

– The first element of all rows must have affinity to thread 0 with phase
0. To achieve this, the following condition must hold: lda%(block size ∗
THREADS) == 0.

October / 2012 14

UPCBLAS API

• If A transpose:

– The first element of A must be in the first row of a block in the shared memory
space.

If any array overlaps, the behavior is undefined.

ADVICE:

The upc pblas rowDist case is much more efficient than theupc pblas colDist case.

5.2 upc blas Tger

Function to perform the outer product of two vectors: A = α ∗ x ∗ y′ + A.

SYNTAX:

• int upc blas sger(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, float alpha, shared void *x,

shared void *y, shared void *A, int lda)

• int upc blas dger(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, double alpha, shared void *x,

shared void *y, shared void *A, int lda)

• int upc blas cgerc(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, void *alpha, shared void *x,

shared void *y, shared void *A, int lda)

• int upc blas zgerc(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, void *alpha, shared void *x,

shared void *y, shared void *A, int lda)

• int upc blas cgeru(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, void *alpha, shared void *x,

shared void *y, shared void *A, int lda)

• int upc blas zgeru(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, void *alpha, shared void *x,

shared void *y, shared void *A, int lda)

PARAMETERS:

• IN dimmDist: Enumerated value representing the matrix dimension that will be dis-
tributed among threads. Each thread must have one or more complete rows orcolumns
depending on this parameter. If upc pblas rowDist is selected, each thread has com-
plete rows. Columns are distributed entirely in the upc pblas colDist case.

October / 2012 15

UPCBLAS API

• IN block size: Number of rows or columns (depending on dimmDist) of the matrix
that are consecutively distributed among all threads. For example, in the upc pblas rowDist

case, the first block size rows will correspond to thread 0, the second block size

ones to thread 1, etc. Remember that blocks are built using whole rows/columns and
not individual elements.

• IN sec block size: Depending on the selected dimmDist, the block size of one of
the source vectors is automatically determined (see RESTRICTIONS below) but the
distribution of the other vector can vary. This parameter is used to indicate the block
size of the vector not automatically defined.

• IN m: Number of rows of matrix A.

• IN n: Number of columns of matrix A.

• IN alpha: Scale factor.

• IN x: Pointer to the position of the shared array where the source vector x is stored.

• IN y: Pointer to the position of the shared array where the source vector y is stored.

• IN/OUT A: Pointer to the position of the shared array where matrix A is stored.

• IN lda: It specifies the first dimension of A as declared in the calling program (used
to work with submatrices). It must be at least n.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

– +1 if an internal memory error occurs.

RESTRICTIONS:

The block size specifications are different depending on the dimmDist selection:

1. upc pblas rowDist: All the elements in a row must have affinity to the same thread
but the number of consecutive rows in each thread can change. In this case, this
function treats array pointers as if they had type:

• A:shared [block size*lda] type [m*lda]

• x:shared [sec block size] type [m]

• y:shared [block size] type [n]

Besides, there are some limitations about the block size and sec block size param-
eters:

October / 2012 16

UPCBLAS API

• The address of the first element of y must have phase 0.

• The address of the first element of x must have phase 0.

• The first element of A and x must be in parts of the shared memory with affinity
to the same thread.

• The first element of A must be in the first row of a block in the shared memory
space.

2. upc pblas colDist: All the elements in a column must have affinity to the same
thread but the number of consecutive columns in each thread can change. In this case,
this function treats array pointers as if they had type:

• A:shared [block size] type [m*lda]

• x:shared [block size] type [m]

• y:shared [sec block size] type [n]

Besides, there are some limitations about the block size and sec block size param-
eters:

• The address of the first element of y must have phase 0.

• The address of the first element of x must have phase 0.

• The first element of A and y must be in parts of the shared memory with affinity
to the same thread.

• The address of the first element of A must have phase 0.

• The first element of all rows must have affinity to thread 0 with phase 0. To achieve
this, the following condition must hold: lda%(block size ∗ THREADS) == 0.

If any array overlaps, the behavior is undefined.

5.3 upc blas Ttrsv

Function to solve the triangular system of equations x = T−1 ∗ x (with transpose variants of
matrix T).

SYNTAX:

• int upc blas strsv(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG

diag, int n, shared void *T, int ldt, shared void *x)

• int upc blas dtrsv(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG

diag, int n, shared void *T, int ldt, shared void *x)

October / 2012 17

UPCBLAS API

• int upc blas ctrsv(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG

diag, int n, shared void *T, int ldt, shared void *x)

• int upc blas ztrsv(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG

diag, int n, shared void *T, int ldt, shared void *x)

PARAMETERS:

• IN dimmDist: Enumerated value representing the matrix dimension that will be dis-
tributed among threads. Each thread must have one or more complete rows or columns
depending on this parameter. If upc pblas rowDist is selected, each thread has com-
plete rows. Columns are distributed entirely in the upc pblas colDist case.

• IN block size: Number of rows or columns (depending on dimmDist) of the matrix
that are consecutively distributed among all threads. For example, in the upc pblas rowDist

case, the first block size rows will correspond to thread 0, the second block size

ones to thread 1, etc. Remember that blocks are built using whole rows/columns and
not individual elements.

• IN uplo: Enumerated value to indicate if matrix T is upper or lower triangular.

• IN transpose: Enumerated value to indicate if matrix T is transposed.

• IN diag: Enumerated value to indicate if all the diagonal values of T are equal to 1 or
not.

• IN n: Number of rows and columns of matrix T.

• IN T: Pointer to the position of the shared array where the source triangular matrix T

is stored.

• IN ldt: It specifies the first dimension of T as declared in the calling program (used
to work with submatrices). It must be at least n.

• IN/OUT x: Pointer to the position of the shared array where the vector x is stored.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

– +1 if an internal memory error occurs.

RESTRICTIONS:

The block size specifications are different depending on the dimmDist selection:

October / 2012 18

UPCBLAS API

1. upc pblas rowDist: All the elements in a row must have affinity to the same thread
but the number of consecutive rows in each thread can change. In this case, this
function treats array pointers as if they had type:

• T:shared [block size*ldt] type [n*ldt]

• T:shared [block size] type [n*ldt] in transpose case

• x:shared [block size] type [n]

Besides, there are some limitations about the block size parameter:

• The address of the first element of x must have phase 0.

• The first element of T and x must be in parts of the shared memory with affinity
to the same thread.

• If T non-transpose:

– The first element of T must be in the first row of a block in the shared memory
space.

• If T transpose:

– The address of the first element of T must have phase 0.

– The first element of all rows must have affinity to thread 0 with phase
0. To achieve this, the following condition must hold: ldt%(block size ∗
THREADS) == 0.

2. upc pblas colDist: All the elements in a column must have affinity to the same
thread but the number of consecutive columns in each thread can change. In this case,
this function treats array pointers as if they had type:

• T:shared [block size] type [n*ldt]

• T:shared [block size*ldt] type [n*ldt] in transpose case

• x:shared [block size] type [n]

Besides, there are some limitations about the block size and sec block size param-
eters:

• The address of the first element of x must have phase 0.

• The first element of T and x must be in parts of the shared memory with affinity
to the same thread.

• If T non-transpose:

– The address of the first element of T must have phase 0.

– The first element of all rows must have affinity to thread 0 with phase
0. To achieve this, the following condition must hold: ldt%(block size ∗
THREADS) == 0.

• If T transpose:

October / 2012 19

UPCBLAS API

– The first element of T must be in the first row of a block in the shared memory
space.

If any array overlaps, the behavior is undefined.

ADVICE:

No check for singularity or near singularity of matrix T is included in this function. It
must be implemented before the function call if necessary.

October / 2012 20

UPCBLAS API

These routines perform matrix-matrix operations. Their headers are available in the file
include/pblas3.h.

5.4 upc blas Tgemm

Function to perform the matrix-matrix product: C = α ∗ A ∗ B + β ∗ C (with transpose
variants of matrices A and B).

SYNTAX:

• int upc blas sgemm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transposeA,

UPC PBLAS TRANSPOSE transposeB, int m, int n, int k, float

alpha, shared void *A, int lda, shared void *B, int ldb, float

beta, shared void *C, int ldc)

• int upc blas dgemm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transposeA,

UPC PBLAS TRANSPOSE transposeB, int m, int n, int k, double

alpha, shared void *A, int lda, shared void *B, int ldb, double

beta, shared void *C, int ldc)

• int upc blas cgemm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transposeA,

UPC PBLAS TRANSPOSE transposeB, int m, int n, int k, void

alpha, shared void *A, int lda, shared void *B, int ldb, void

beta, shared void *C, int ldc)

• int upc blas zgemm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transposeA,

UPC PBLAS TRANSPOSE transposeB, int m, int n, int k, void

alpha, shared void *A, int lda, shared void *B, int ldb, void

beta, shared void *C, int ldc)

PARAMETERS:

• IN dimmDist: Enumerated value representing the dimesion of matrix C that will be
distributed among threads. Each thread must have one or more complete rows or-
columns depending on this parameter. If upc pblas rowDist is selected, each thread
has complete rows. Columns are distributed entirely in upc pblas colDist case.

• IN block size: Number of rows or columns (depending on dimmDist) of matrix C that
are consecutively distributed among all threads. For example, in the upc pblas rowDist

case, the first block size rows will correspond to thread 0, the second block size

ones to thread 1, etc. Remember that blocks are built using whole rows/columns and
not individual elements.

October / 2012 21

UPCBLAS API

• IN sec block size: Depending on the selected dimmDist, the block size of one of the
source matrices (A or B) is automatically determined (see RESTRICTIONS below) but
the distribution of the other matrix can vary. This parameter is used to indicate the
block size of the matrix not automatically defined.

• IN transposeA: Enumerated value to indicate if matrix A is transposed.

• IN transposeB: Enumerated value to indicate if matrix B is transposed.

• IN m: Number of rows of matrices A and C.

• IN n: Number of columns of matrices B and C.

• IN k: Number of columns of matrix A and rows of matrix B.

• IN alpha: Scale factor for matrix A.

• IN A: Pointer to the position of the shared array where the source matrix A is stored.

• IN lda: It specifies the first dimension of A as declared in the calling program (used
to work with submatrices). It must be at least k in the non-transpose case and m in
the transpose case.

• IN B: Pointer to the position of the shared array where the source matrix B is stored.

• IN ldb: It specifies the first dimension of B as declared in the calling program (used
to work with submatrices). It must be at least n in the non-transpose case and k in
the transpose case.

• IN beta: Scale factor for matrix C.

• IN/OUT C: Pointer to the position of the shared array where matrix C is stored.

• IN ldc: It specifies the first dimension of C as declared in the calling program (used
to work with submatrices). It must be at least n.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

– +1 if an internal memory error occurs.

RESTRICTIONS:

The block size specifications are different depending on the dimmDist selection:

1. upc pblas rowDist: All the elements in a row of matrix C must have affinity to the
same thread but the number of consecutive rows in each thread can change. In this
case, this function treats array pointers as if they had type:

October / 2012 22

UPCBLAS API

• A:shared [block size*lda] type [m*lda]

• A:shared [block size] type [k*lda] in transpose case

• B:shared [sec block size] type [k*ldb]

• B:shared [sec block size] type [n*ldb] in transpose case

• C:shared [block size*ldc] type [m*ldc]

Besides, there are some limitations about the block size and sec block size param-
eters:

• ldb and sec block size must be multiples of each other.

• The first element of B must be in the first row of a block in the shared array.

• The first element of C must be in the first row of a block in the shared array.

• The first element of A and C must be in parts of the shared memory with affinity
to the same thread.

• If A non-transpose:

– The first element of A must be in the first row of a block in the shared memory
space.

• If A transpose:

– The first element of A must be in the first column of a block in the shared
memory space.

– The first element of all rows must have affinity to thread 0 with phase
0. To achieve this, the following condition must hold: lda%(block size ∗
THREADS) == 0.

2. upc pblas colDist: All the elements in a column of matrix C must have affinity to
the same thread but the number of consecutive columns in each thread can change. In
this case, this function treats array pointers as if they had type:

• A:shared [sec block size] type [m*lda]

• A:shared [sec block size] type [k*lda] in transpose case

• B:shared [block size] type [k*ldb]

• B:shared [block size*ldb] type [n*ldb] in transpose case

• C:shared [block size] type [m*ldc]

Besides, there are some limitations about the block size and sec block size param-
eters:

• lda and sec block size must be multiples of each other.

• The first element of A must be in the first row of a block in the shared array.

• The first element of C must be in the first row of a block in the shared array.

October / 2012 23

UPCBLAS API

• The first element of B and C must be in parts of the shared memory with affinity
to the same thread.

• If B non-transpose:

– The first element of B must be in the first column of a block in the shared
memory space.

– The first element of all rows must have affinity to thread 0 with phase
0. To achieve this, the following condition must hold: ldb%(block size ∗
THREADS) == 0.

• If B transpose:

– The first element of B must be in the first row of a block in the shared memory
space.

If any array overlaps, the behavior is undefined.

5.5 upc blas Ttrsm

Function to solve the triangular systems of equations X = T−1 ∗ α ∗X or X = α ∗X ∗ T−1
(with transpose variants of matrix T).

SYNTAX:

• int upc blas strsm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS SIDE side, UPC PBLAS UPLO uplo,

UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG diag, int m, int n,

float alpha, shared void *T, int ldt, shared void *X, int ldx);

• int upc blas dtrsm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS SIDE side, UPC PBLAS UPLO uplo,

UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG diag, int m, int n,

double alpha, shared void *T, int ldt, shared void *X, int ldx);

• int upc blas ctrsm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS SIDE side, UPC PBLAS UPLO uplo,

UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG diag, int m, int n,

void *alpha, shared void *T, int ldt, shared void *X, int ldx);

• int upc blas ztrsm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS SIDE side, UPC PBLAS UPLO uplo,

UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG diag, int m, int n,

void *alpha, shared void *T, int ldt, shared void *X, int ldx);

PARAMETERS:

October / 2012 24

UPCBLAS API

• IN dimmDist: Enumerated value representing the dimension of matrix X that will be
distributed among threads. Each thread must have one or more complete rows or
columns depending on this parameter. If upc pblas rowDist is selected, each thread
has complete rows. Columns are distributed entirely in the upc pblas colDist case.

• IN block size: Number of rows or columns (depending on dimmDist) of matrix X that
are consecutively distributed among all threads. For example, in the upc pblas rowDist

case, the first block size rows will correspond to thread 0, the second block size

ones to thread 1, etc. Remember that blocks are built using whole rows/columns and
not individual elements.

• IN sec block size: Number of elements consecutively distributed among all threads
in matrix T in the options: upc pblas colDist & upc pblas left or upc pblas rowDist

& upc pblas right.

• IN side: Enumerated value to indicate if matrix T is on the left or right side of the
equation.

• IN uplo: Enumerated value to indicate if matrix T is upper or lower triangular.

• IN transpose: Enumerated value to indicate if matrix T is transposed.

• IN diag: Enumerated value to indicate if all the diagonal values of T are equal to 1 or
not.

• IN m: Number of rows of matrix X. The dimension of matrix T if upc pblas left.

• IN n: Number of columns of matrix X. The dimension of matrix T if upc pblas right.

• IN alpha: Scale factor for matrix T.

• IN T: Pointer to the position of the shared array where the source triangular matrix T

is stored.

• IN ldt: It specifies the first dimension of T as declared in the calling program (used
to work with submatrices). It must be at least m in the upc pblas left case and n in
the upc pblas right case.

• IN/OUT X: Pointer to the position of the shared array where matrix X is stored.

• IN ldx: It specifies the first dimension of X as declared in the calling program (used
to work with submatrices). It must be at least n.

• returns:

– 0 if everything is ok.

– < 0 if a parameter error occurs. The exact value is -j if the wrong parameter is
the jth one.

– +1 if an internal memory error occurs.

October / 2012 25

UPCBLAS API

RESTRICTIONS:

The block size specifications are different depending on the dimmDist and side selec-
tion:

1. upc pblas rowDist & upc pblas left: All the elements in a row of matrix X must
have affinity to the same thread but the number of consecutive rows in each thread
can change. In this case, this function treats array pointers as if they had type:

• T:shared [block size*ldt] type [m*ldt]

• T:shared [block size] type [m*ldt] in transpose case

• X:shared [block size*ldx] type [m*ldx]

Besides, there are some limitations about the block size parameter:

• The first element of X must be in the first row of a block in the shared memory
space.

• The first element of T and X must be in parts of the shared memory with affinity
to the same thread.

• If T non-transpose:

– The first element of T must be in the first row of a block in the shared memory
space.

• If T transpose:

– The first element of T must be in the first column of a block in the shared
memory space.

2. upc pblas colDist & upc pblas left: All the elements in a column of matrix X must
have affinity to the same thread but number of consecutive columns in each thread can
change. In this case, this function treats array pointers as if they had type:

• T: shared [sec block size] type [m*ldt]

• X: shared [block size] type [m*ldx]

Besides, there are some limitations about the block size and sec block size param-
eters:

• ldt and sec block size must be multiples of each other.

• The first element of T must be in the first row of a block in the shared memory
space.

• The first element of X must be in the first column of a block in the shared memory
space.

3. upc pblas rowDist & upc pblas right: All the elements in a row of matrix X must
have affinity to the same thread but the number of consecutive rows in each thread
can change. In this case, this function treats array pointers as if they had type:

October / 2012 26

UPCBLAS API

• T:shared [sec block size] type [n*ldt]

• X:shared [block size*ldx] type [m*ldx]

Besides, there are some limitations about the block size and sec block size param-
eters:

• ldt and sec block size must be multiples of each other.

• The first element of T must be in the first row of a block in the shared memory
space.

• The first element of X must be in the first row of a block in the shared memory
space.

4. upc pblas colDist & upc pblas right: All the elements in a column of matrix X

must have affinity to the same thread but number of consecutive columns in each
thread can change. In this case, this function treats array pointers as if they had type:

• T:shared [block size] type [n*ldt]

• T:shared [block size*ldt] type [n*ldt] in transpose case

• X:shared [block size] type [m*ldx]

Besides, there are some limitations about block size parameter:

• The first element of X must be in the first column of a block in the shared array.

• The first element of T and X must be in parts of the shared memory with affinity
to the same thread.

• If T non-transpose:

– The first element of T must be in the first column of a block in the shared
memory space.

• If T transpose:

– The first element of T must be in the first row of a block in the shared memory
space.

If any array overlaps, the behavior is undefined.

No check for singularity or near singularity of matrix T is included in this function. It
must be implemented before the function call if necessary.

October / 2012 27

