
A Parallel Numerical Library for UPC

Jorge González-Domı́nguez1, Maŕıa J. Mart́ın1, Guillermo L. Taboada1, Juan
Touriño1, Ramón Doallo1, and Andrés Gómez2
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Abstract. Unified Parallel C (UPC) is a Partitioned Global Address
Space (PGAS) language that exhibits high performance and portability
on a broad class of shared and distributed memory parallel architectures.
This paper describes the design and implementation of a parallel numer-
ical library for UPC built on top of the sequential BLAS routines. The
developed library exploits the particularities of the PGAS paradigm, tak-
ing into account data locality in order to guarantee a good performance.
The library was experimentally validated, demonstrating scalability and
efficiency.
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1 Introduction

The Partitioned Global Address Space (PGAS) programming model provides
important productivity advantages over traditional parallel programming mod-
els. In the PGAS model all threads share a global address space, just as in
the shared memory model. However, this space is logically partitioned among
threads, just as in the distributed memory model. In this way, the programmer
can exploit data locality in order to increase the performance, at the same time
as the shared space facilitates the development of parallel codes. PGAS lan-
guages trade off ease of use for efficient data locality exploitation. Over the past
several years, the PGAS model has been gaining rising attention. A number of
PGAS languages are now ubiquitous, such as Titanium [1], Co-Array Fortran [2]
and Unified Parallel C (UPC) [3].

UPC is an extension of standard C for parallel computing. In [4] El-Ghazawi
et al. establish, through extensive performance measurements, that UPC can
potentially perform at similar levels to those of MPI. Barton et al. [5] further
demonstrate that UPC codes can obtain good performance scalability up to
thousands of processors with the right support from the compiler and the run-
time system. Currently there are commercial and open source based compilers
of UPC for nearly all parallel machines.



However, a barrier to a more widespread acceptance of UPC is the lack of
library support for algorithm developers. The BLAS (Basic Linear Algebra Sub-
programs) [6,7] are routines that provide standard building blocks for performing
basic vector and matrix operations. They are widely used by scientists and en-
gineers to obtain good levels of performance through an efficient exploitation
of the memory hierarchy. The PBLAS (Parallel Basic Linear Algebra Subpro-
grams) [8,9] are a parallel subset of BLAS, which have been developed to assist
programmers on distributed memory systems. However, PGAS-based counter-
parts are not available. In [10] a parallel numerical library for Co-Array Fortran
is presented, but this library focuses on the definition of distributed data struc-
tures based on an abstract object called object map. It uses Co-Array syntax,
embedded in methods associated with distributed objects, for communication
between objects based on information in the object map.

This paper presents a library for numerical computation in UPC that im-
proves the programmability and performance of UPC applications. The library
contains a relevant subset of the BLAS routines. The developed routines exploit
the particularities of the PGAS paradigm, taking into account data locality in or-
der to guarantee a good performance. Besides, the routines use internally BLAS
calls to carry out the sequential computation inside each thread. The library was
experimentally validated on the HP Finis Terrae supercomputer [11].

The rest of the paper is organized as follows. Section 2 describes the library
design: types of functions (shared and private), syntax and main characteristics.
Section 3 explains the data distributions used for the private version of the
routines. Section 4 presents the experimental results obtained on the Finis Terrae
supercomputer. Finally, conclusions are discussed in Section 5.

2 Library Design

Each one of the selected BLAS routines has two UPC versions, a shared and a
private one. In the shared version the data distributions are provided by the user
through the use of shared arrays with a specific block size (that is, the blocking
factor or number of consecutive elements with affinity to the same thread). In the
private version the input data are private. In this case the data are transparently
distributed by the library. Thus, programmers can use the library independently
of the memory space where the data are stored, avoiding to make tedious and
error-prone distributions. Table 1 lists all the implemented routines, giving a
total of 112 different routines (14×2×4).

All the routines return a local integer error value which refers only to each
thread execution. If the programmer needs to be sure that no error happened in
any thread, the checking must be made by himself using the local error values.
This is a usual practice in parallel libraries to avoid unnecessary synchronization
overheads.

The developed routines do not implement the numerical operations (e.g. dot
product, matrix-vector product, etc.) but they call internally to BLAS routines
to perform the sequential computations in each thread. Thus, the UPC BLAS



BLAS level Tblasname Action

BLAS1

Tcopy Copies a vector
Tswap Swaps the elements of two vectors
Tscal Scales a vector by a scalar
Taxpy Updates a vector using another one:

y = α ∗ x+ y
Tdot Dot product

Tnrm2 Euclidean norm
Tasum Sums the absolute value of the elements of a vector
iTamax Finds the index with the maximum value
iTamin Finds the index with the minimum value

BLAS2
Tgemv Matrix-vector product
Ttrsv Solves a triangular system of equations
Tger Outer product

BLAS3
Tgemm Matrix-matrix product
Ttrsm Solves a block of triangular systems of equations

Table 1: UPC BLAS routines. All the routines follow the naming convention:
upc blas [p]Tblasname. Where the character ”p” indicates private function, that is,
the input arrays are private; character ”T” indicates the type of data (i=integer; l=long;
f=float; d=double); and blasname is the name of the routine in the sequential BLAS
library.

routines act as an interface to distribute data and synchronize the calls to the
BLAS routines in an efficient and transparent way.

2.1 Shared Routines

The UPC language has two standard libraries: the collective library (integrated
into the language specification, v1.2 [3]) and the I/O library [12]. The shared
version of the numerical routines follows the syntax style of the collective UPC
functions. Using the same syntax style as the UPC collective routines eases the
learning process to the UPC users. For instance, the syntax of the UPC dot
product routine with shared data is:

int upc blas ddot(const int block size, const int size, shared
const double *x, shared const double *y, shared double *dst);

being x and y the source vectors of length size, and dst the pointer to shared
memory where the dot product result will be written; block size is the blocking
factor of the source vectors. This function treats x and y pointers as if they had
type shared [block size] double[size].

In the case of BLAS2 and BLAS3 routines, an additional parameter
(dimmDist) is needed to indicate the dimension used for the matrix distribution
because shared arrays in UPC can only be distributed in one dimension. The



UPC routine to solve a triangular system of equations is used to illustrate this
issue:

int upc blas dtrsv(const UPC PBLAS TRANSPOSE transpose, const
UPC PBLAS UPLO uplo, const UPC PBLAS DIAG diag, const
UPC PBLAS DIMMDIST dimmDist, const int block size, const
int n, shared const double *M, shared double *x);

being M the source matrix and x the source and result vector; block size is
the blocking factor of the source matrix; n the number of rows and columns of
the matrix; transpose, uplo and diag enumerated values which determine the
characteristics of the source matrix (transpose/non-transpose, upper/lower tri-
angular, elements of the diagonal equal to one or not); dimmDist is another enu-
merated value to indicate if the source matrix is distributed by rows or columns.
The meaning of the block size parameter depends on the dimmDist value.
If the source matrix is distributed by rows (dimmDist=upc pblas rowDist),
block size is the number of consecutive rows with affinity to the same thread. In
this case, this function treats pointer M as if it had type shared[block size*n]
double[n*n]. Otherwise, if the source matrix is distributed by columns
(dimmDist=upc pblas colDist), block size is the number of consecutive
columns with affinity to the same thread. In this case, this function treats pointer
M as if it had type shared[block size] double[n*n].

As mentioned before, in the shared version of the BLAS2 and BLAS3 routines
it is not possible to distribute the matrices by 2D blocks (as the UPC syntax does
not allow it), which can be a limiting factor for some kinds of parallel computa-
tions. To solve this problem, an application layer with support for various dense
matrix decomposition strategies is presented in [13]. A detailed discussion about
its application to a particular class of algorithms is also included. However, such
a support layer still requires considerable development to become useful for a
generic numerical problem. In [14] an extension to the UPC language that allows
the programmer to block shared arrays in multiple dimensions is proposed. This
extension is not currently part of the standard.

2.2 Private Routines

The private version of the routines does not store the input data in a shared
array distributed among the threads, but data are completely stored in the pri-
vate memory of one or more threads. Its syntax is similar to the shared one,
but the block size parameter is omitted as in this case the data distribution
is internally applied by the library. For instance, the syntax for the dot routine is:

int upc blas pddot(const int size, const int src thread, const
double *x, const double *y, const int dst thread, double *dst);

being x and y the source vectors of length size; dst the pointer to private mem-
ory where the dot product result will be written; and src thread/dst thread



the rank number of the thread (0,1,. . .THREADS-1, being THREADS the total
number of threads in the UPC execution) where the input/result is stored. If
src thread=THREADS, the input is replicated in all the threads. Similarly, if
dst thread=THREADS the result will be replicated to all the threads.

The data distributions used internally by the private routines will be ex-
plained in the next section. Unlike the shared version of the routines, in the
private one a 2D block distribution for the matrices can be manually built.

2.3 Optimization Techniques

There exist a number of known optimization techniques that improve the ef-
ficiency and performance of the UPC codes. The following optimizations have
been applied to the implementation of the routines whenever possible:

– Space privatization: When dealing with local shared data, they are accessed
through standard C pointers instead of using UPC pointers to shared mem-
ory. Shared pointers often require more storage and are more costly to deref-
erence. Experimental measurements in [4] have shown that the use of shared
pointers increases execution times by up to three orders of magnitude. For
instance, space privatization is widely used in our routines when a thread
needs to access only to the elements of a shared array with affinity to that
thread.

– Aggregation of remote shared memory accesses: This can be established
through block copies, using upc memget and upc memput on remote blocks
of data required by a thread, as will be shown in the next section.

– Overlapping of remote memory accesses with computation: It was achieved
by the usage of split-phase barriers. For instance, these barriers are used in
the triangular solver routines to overlap the local computation of each thread
with the communication of partial results to the other threads (see Section
3.3).

3 Data Distributions for the Private Routines

UPC local accesses can be one or two orders of magnitude faster than UPC
remote accesses. Thus, all the private functions have been implemented using
data distributions that minimize accesses to remote memory in a transparent
way to the user.

As mentioned in the previous section, if the parameter dst thread=THREADS,
the piece of result obtained by each thread is replicated to all the other ones. To
do this, two different options were considered:

– Each thread copies its piece of result into THREADS shared arrays, each one
with affinity to a different thread. This leads to THREADS-1 remote accesses
for each thread, that is, THREADS × (THREADS - 1) accesses.



(a) cyclic distribution (b) block distribution

Fig. 1: Data movement using a block and a cyclic distribution

– Each thread first copies its piece of result into a shared array with affin-
ity to thread 0. Then, each thread copies the whole result from thread 0
to its private memory. In this case the number of remote accesses is only
2 × (THREADS-1), although in half of these accesses (the copies in private
memory) the amount of data transfered is greater than in the first option.

A preliminary performance evaluation of these two options (using the bench-
marks of Section 4) has shown that the second one achieves the highest perfor-
mance, especially on distributed memory systems.

Due to the similarity among the algorithms used in each BLAS level, the
chosen distribution has been the same for all the routines inside the same level
(except for the triangular solver).

3.1 BLAS1 Distributions

UPC BLAS1 consists of routines that operate with one or more dense vectors.
Figure 1 shows the copy of the result in all the threads for a cyclic and a block
distribution using the procedure described above (the auxiliary array is a shared
array with affinity to thread 0). The block distribution was chosen because all
the copies can be carried out in block, allowing the use of the upc memput() and
upc memget() functions.

3.2 BLAS2 Distributions

This level contains matrix-vector operations. A matrix can be distributed by
rows, by columns or by 2D blocks. The matrix-vector product will be used as an
example to explain the chosen distribution.

Figure 2 shows the routine behavior for a column distribution. In order to
compute the i − th element of the result, all the i − th values of the subresults
should be added. Each of these adds is performed using the upc all reduceT



Fig. 2: Matrix-vector product using a column distribution for the matrix

Fig. 3: Matrix-vector product using a row distribution for the matrix

Fig. 4: Matrix-vector product using a 2D block distribution for the matrix

function (with upc op t op=UPC ADD) from the collective library. Other lan-
guages allow to compute the set of all the reduction operations in an efficient
way using a unique collective function (e.g. MPI Reduce). However, UPC has not
such a function, at least currently.

The row distribution is shown in Figure 3. In this case each thread computes
a piece of the final result (subresults in the figure). These subresults only must
be copied in an auxiliary array in the right position, and no reduction operation
is necessary.

Finally, Figure 4 shows a 2D block distribution. This is a good alternative
for cache locality exploitation. This option involves a reduction operation for
each row. Each one of these reductions must be performed by all the threads
(although not all the threads have elements for all the rows) because UPC does
not allow to use a subset of threads in collective functions.



Fig. 5: Matrix-matrix product using a row distribution for the matrix

Fig. 6: Matrix distribution for the upc blas pTtrsm routine

Experimental results showed that the row distribution is the best option as
no collective operation is needed. In [15] Nishtala et al. propose extensions to
the UPC collective library in order to allow subsets (or teams) of threads to
perform a collective function together. If these extensions were included in the
UPC specification the column and 2D block distributions should be reconsidered.

3.3 BLAS3 Distributions

This level contains matrix-matrix operations. Once again, a matrix can be dis-
tributed by rows, by columns or by 2D blocks. Actually, the advantages and
disadvantages of each distribution are the same discussed in the previous section
for BLAS2 routines, so the row distribution was selected again. Figure 5 shows
the routine behavior for the matrix-matrix product using this row distribution.

Regarding the matrix distribution, the routines to solve triangular systems
of equations (Ttrsv and Ttrsm) are a special case. In these routines, the rows of
the matrix are not distributed in a block way but in a block-cyclic one in order
to increase the parallelism and balance the load. Figure 6 shows an example
for the Ttrsm routine with two threads, two blocks per thread and a source
matrix with the following options (see the syntax of the similar Ttrsv routine in
Section 2.1): non-transpose (transpose=upc pblas noTrans), lower triangular
(uplo=upc pblas lower), and not all the main diagonal elements equal to one
(diag=upc pblas nonUnit). The triangular matrix is logically divided in square
blocks Mij . These blocks are triangular submatrices if i = j, square submatrices
if i > j, and null submatrices if i < j.

The algorithm used by this routine is shown in Figure 7. The triangular sys-
tem can be computed as a sequence of triangular solutions (Ttrsm) and matrix-



X1 ← Solve M11 ∗X1 = B1 BLAS Ttrsm()1

--- synchronization ---2

B2 ← B2 −M21 ∗X1 BLAS Tgemm()3

B3 ← B3 −M31 ∗X1 BLAS Tgemm()4

B4 ← B4 −M41 ∗X1 BLAS Tgemm()5

X2 ← Solve M22 ∗X2 = B2 BLAS Ttrsm()6

--- synchronization ---7

B3 ← B3 −M32 ∗X2 BLAS Tgemm()8

...9

Fig. 7: UPC BLAS Ttrsm algorithm

matrix multiplications (Tgemm). Note that all operations between two synchro-
nizations can be performed in parallel. The more blocks the matrix is divided
in, the more computations can be simultaneously performed, but the more syn-
chronizations are needed too. Experimental measurements have been made to
find the block size with the best trade-off between parallelism and synchroniza-
tion overhead. For our target supercomputer (see Section 4) and large matrices
(n>2000) this value is approximately 1000/THREADS.

4 Experimental Results

In order to evaluate the performance of the library, different benchmarks were
run on the Finis Terrae supercomputer installed at the Galicia Supercomputing
Center (CESGA), ranked #427 in November 2008 TOP500 list (14 TFlops) [11].
It consists of 142 HP RX7640 nodes, each of them with 16 IA64 Itanium 2 Mont-
vale cores at 1.6 Ghz distributed in two cells (8 cores per cell), 128 GB of memory
and a dual 4X Infiniband port (16 Gbps of theoretical effective bandwidth).

As UPC programs can be run on shared or distributed memory, the results
were obtained using the hybrid memory configuration (shared memory for intra-
node communication and Infiniband transfers for inter-node communication).
This hybrid architecture is very interesting for PGAS languages, allowing the
locality exploitation of threads running in the same node, as well as enhancing
scalability through the use of distributed memory.

Among all the possible hybrid configurations, four threads per node, two per
cell, was chosen. The use of this configuration represents a good trade-off between
shared-memory access performance and scalable access through the Infiniband
network. The compiler used is the Berkeley UPC 2.6.0 [16], and the Intel Math
Kernel Library (MKL) 9.1 [17], a highly tuned BLAS library for Itanium cores,
is the underlying sequential BLAS library.

The times measured in all the experiments were obtained for the private ver-
sion of the routines with the inputs (matrices/vectors) initially replicated in all
threads (src thread=THREADS), and results stored in thread 0 (dst thread=0).
Results for one core have been obtained with the sequential MKL version.



Results taken from shared routines are not presented because they are very
dependent on the data distribution chosen by the user. If programmers choose the
best distribution (that is, the same used in the private versions and explained in
Section 3), times and speedups obtained would be similar to those of the private
counterparts.

Table 2 and Figure 8 show the execution times, speedups and efficiencies
obtained for different vector sizes and number of threads of the pddot routine,
an example of BLAS1 level routine with arrays of doubles stored in private
memory. The size of the arrays is measured in millions of elements. Despite
computations are very short (in the order of milliseconds), this function scales
reasonably well. Only the step from four to eight threads decrease the slope
of the curve, as eight threads is the first configuration where not only shared
memory but also Infiniband communications are used.

Times, speedups and efficiencies for the matrix-vector product (pdgemv, an
example of BLAS2 level) are shown in Table 3 and Figure 9. Square matrices are
used; the size represents the number of rows and columns. As can be observed,
speedups are quite high despite the times obtained from the executions are very
short.

Finally, Table 4 and Figure 10 show times (in seconds), speedups and ef-
ficiencies obtained from the execution of a BLAS3 routine, the matrix-matrix
product (dgemm). Input matrices are also square. Speedups are higher in this
function because of the large computational cost of its sequential version so that
the UPC version benefits from the high ratio computation/communication time.

5 Conclusions

To our knowledge, this is the first parallel numerical library developed for UPC.
Numerical libraries improve performance and programmability of scientific and
engineering applications. Up to now, in order to use BLAS libraries, parallel
programmers have to resort to MPI or OpenMP. With the library presented
in this paper, UPC programmers can also benefit from these highly efficient
numerical libraries, which allows for broader acceptance of this language.

The library implemented allows to use both private and shared data. In the
first case the library decides in a transparent way the best data distribution
for each routine. In the second one the library works with the data distribu-
tion provided by the user. In both cases UPC optimization techniques, such
as privatization or bulk data movements, are applied in order to improve the
performance.

BLAS library implementations have evolved over about two decades and
are therefore extremely mature both in terms of stability and efficiency for a
wide variety of architectures. Thus, the sequential BLAS library is embedded
in the body of the corresponding UPC routines. Using sequential BLAS not
only improves efficiency, but it also allows to incorporate automatically the new
BLAS versions as soon as available.



DOT PRODUCT (pddot)
HH

HHHThr.
Size

50M 100M 150M

1 147,59 317,28 496,37

2 90,47 165,77 262,37

4 43,25 87,38 130,34

8 35,58 70,75 87,60

16 18,30 35,70 53,94

32 9,11 17,95 26,80

64 5,22 10,68 15,59

128 3,48 7,00 10,60

Table 2: BLAS1 pddot times (ms)
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Fig. 8: BLAS1 pddot efficiencies/speedups

MATRIX-VECTOR (pdgemv)
HHH

HHThr.
Size

10000 20000 30000

1 145,08 692,08 1.424,7

2 87,50 379,24 775,11

4 43,82 191,75 387,12

8 27,93 106,30 198,88

16 15,18 53,58 102,09

32 9,38 38,76 79,01

64 4,55 19,99 40,48

128 2,39 10,65 21,23

Table 3: BLAS2 pdgemv times (ms)
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Fig. 9: BLAS2 pdgemv efficiencies/speedups

MATRIX-MATRIX (pdgemm)
HHH

HHThr.
Size

6000 8000 10000

1 68,88 164,39 319,20

2 34,60 82,52 159,81

4 17,82 41,57 80,82

8 9,02 21,27 41,53

16 4,72 10,99 21,23

32 2,56 5,90 11,23

64 1,45 3,24 6,04

128 0,896 1,92 3,50

Table 4: BLAS3 pdgemm times (s)
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Fig. 10: BLAS3 pdgemm efficiencies/speedups



The proposed library has been experimentally tested, demonstrating scalabil-
ity and efficiency. The experiments were performed on a multicore supercomputer
to show the adequacy of the library to hybrid architectures (shared/distributed
memory).

As ongoing work we are currently developing efficient UPC sparse BLAS
routines for parallel sparse matrix computations.
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